Bitdefender

Env-Aware Anomaly Detection

Ignore Style Changes, Stay True to Content!

¹ Bitdefender, Romania ² University of Bucharest ³ MPI for Intelligent Systems, Tübingen

Ștefan Smeu *1,2 Elena Burceanu *1 Andrei Liviu Nicolicioiu 3 Emanuela Haller 1

- Benchmark for unsupervised anomaly detection in images set out the differences between anomaly detection and classical (supervised) distribution shift analysis
- Env-aware learning methods produce better embeddings for anomaly detection
- EA-MoCo adjusting contrastive learning to be aware of multiple environments improves performance

Out-of-Distribution Regimes

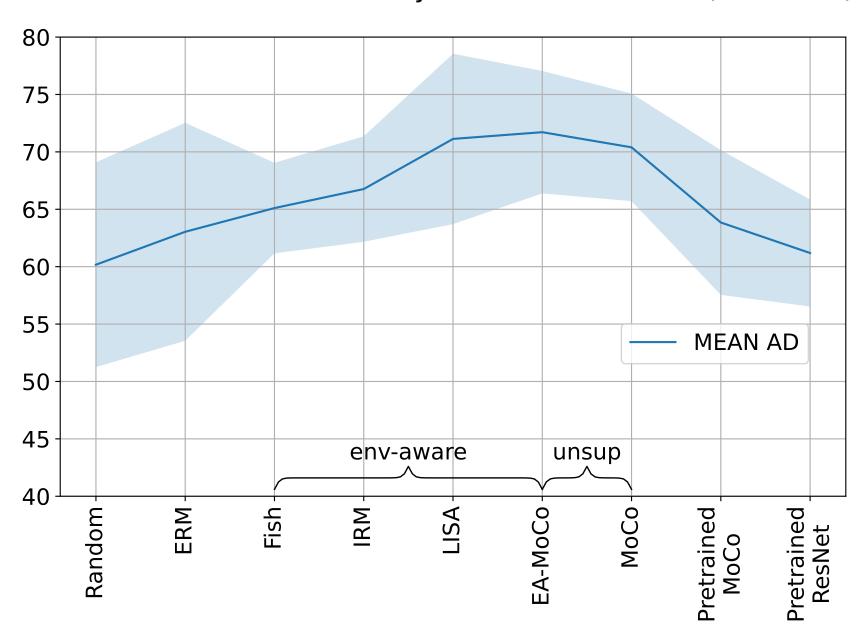
- We identified 4 different scenarios for changes that occur between train and test data
- Differentiate between style and content changes

	Style	Content	Description
A.	ID	ID	Assumption: $p_e(x_S, x_C, y), p_e(x_S, x_C)$ are constant
			Goal/Task: model $p_e(y x)$ or $p_e(x,y)$ or $p_e(x)$
			e.g. algorithms following the ERM paradigm
			Assumption: $p_e(x_S)$ changes over envs - closer to real-world scenarios
В.	OOD	ID	Goal/Task: same as A., while being robust to Style changes
			e.g. IRM, V-Rex, Fish, Lisa
C.		OOD	Assumption: $p_e(x_C)$ changes over envs
	ID		Goal/Task: detect Content changes
			e.g. open set recognition; detect semantic anomalies or novelties
D.	OOD	0.05	Assumption: both $p_e(x_S)$, $p_e(x_C)$ change over envs - closer to real-world scenarios
		OOD	Goal/Task: same as C., while being robust to Style changes
			e.g. EA-MoCo (our approach)

Results

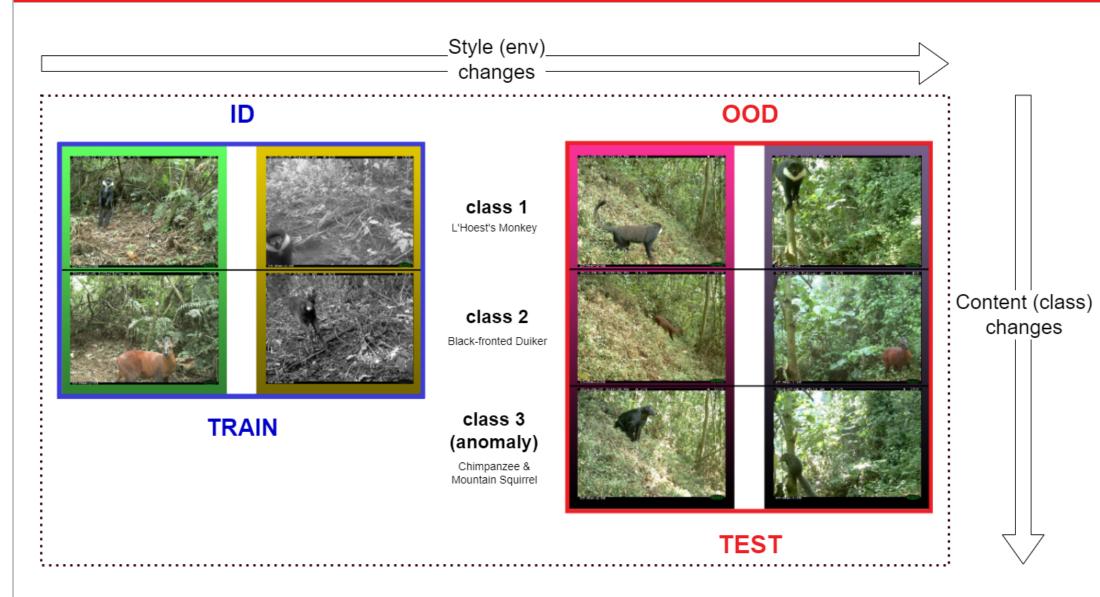
Pretrain	None	Supervised				Unsupervised		Other dataset	
	Random	ERM	Fish	IRM	Lisa	EA-MoCo	MoCo v3	MoCo v3	ResNet
경 IsoForest	65.2	63.1	68.0	64.3	75.2	70.9	68.4	64.6	61.8
₩ INNE	50.1	67.7	66.1	68.7	76.5	77.0	71.9	68.7	57.8
Ĕ LODA	65.1	63.8	66.7	66.2	73.9	71.1	66.9	67.1	69.9
g ocsvm	57.9	67.5	65.5	64.5	78.4	71.4	68.5	57.1	62.1
PCA	64.1	40.4	63.3	64.4	55.6	67.7	63.9	60.9	63.2
E LOF5	43.2	61.0	59.7	61.3	65.1	60.9	68.3	58.5	53.2
₹ KNN	73.2	75.7	72.0	77.7	66.9	77.0	78.9	76.5	57.8
KDE	62.6	65.1	59.4	67.0	77.4	77.8	76.3	57.4	63.6
Mean AD (OOD)	60.2	63.0	65.1	66.8	71.1	71.7	70.4	63.8	61.2

Mean ROC-AUC over Anomaly Detection methods (iWildCam)



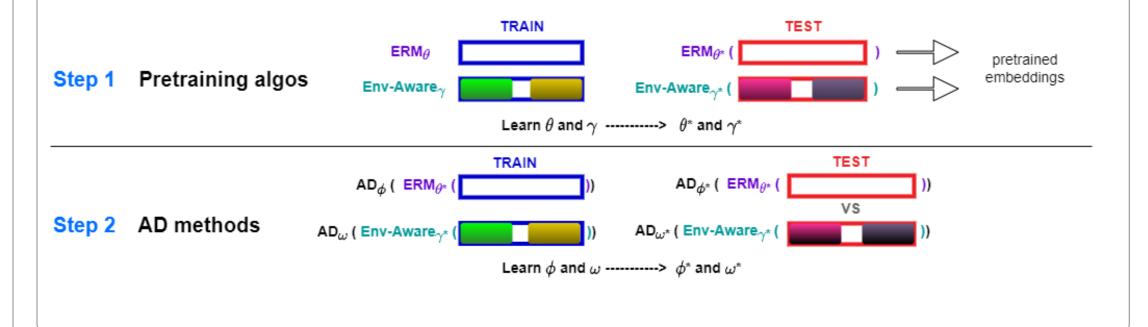
- Env-aware methods perform better
- EA-MoCo scores best on most AD methods

Anomaly Detection Setup - Style and Content OOD



Two-Step Learning Process

- Step 1 Learn embeddings robust to style changes using env-aware methods (currently, they cover only supervised tasks)
- Step 2 Anomaly detection using those learned embeddings



Data Splits

- Train data (of both steps) consists only of ID content and ID style data
- Pretraining test data consists only of OOD style, ID content data
- Anomaly detection test data consists of OOD style, ID & OOD content data

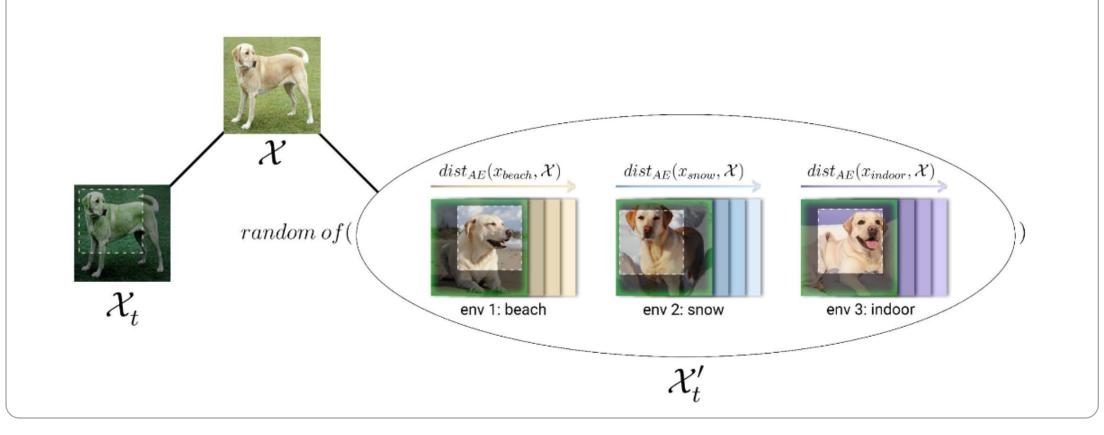
Step 1: Supervised Non-AD Pretraining

- We adapt already existing env-aware solutions for supervised learning (e.g. IRM, LISA, V-Rex) to anomaly detection
- We model the supervised task as a binary classification of 2 groups of labels

Step 1: Fully Unsupervised Pretraining - EA-MoCo

EA-MoCo - env-aware contrastive learning with positive pair formed of:

- usual random augmented version of anchor (\mathcal{X}_t)
- closest sample from a different, random environment w.r.t. trained autoencoder embeddings (\mathcal{X}'_t)



Contact us

{ssmeu, eburceanu}@bitdefender.com https://bit-ml.github.io/

