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Introduction

Input:
— Unstructured video sequences

Output:
— Depth map
* Monocular observation
— Ego-motion
* Camera motion relative to a rigid scene
* 6 DoF

Training:
— Unsupervised

Results:
— Monocular depth — comparably with supervised methods

— Pose estimation — favorably comparable to established SLAM systems under
comparable input settings



Motivation

e Simulate human performances of inferring ego-motion and
the 3D structure of a scene even over short timescales

* Why do humans excel at this task?

— Development of rich, structural understanding of the world
through our past visual experience

— Learn regularities of the world



e Train a model that observes
sequences of images and
aims to explain its
observations by predicting
likely camera motion and
the scene structure

(a) Training: unlabeled video clips.
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* Meta-task — view synthesis

=> Learn intermediate tasks
(depth and camera pose
estimation)
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(b) Testing: single-view depth and multi-view pose estimation.



Assumptions

 |deal situation

— The scene is static, without moving objects

e Changes are dominated by camera motion

— There is no occlusion/disocclusion between source and target views

— The surface is Lambertian so that no photo-consistency error is
meaningful

e Handle model limitations

— Explainability prediction network



Approach

* Jointly train:
— Single-view depth CNN
— Camera pose estimation CNN

* Supervision signal: view synthesis
per — pixel depth map of target

pose => target view
visibility in nearby view

* Explainability prediction network

— jointly and simultaneously with depth and pose
networks



View synthesis as supervision

* Previous approaches

— Single view depth estimation

e “Unsupervised CNN for single view depth estimation: Geometry to the rescue” —
ECCV 2016

R. Garg, V.K. BG, G Carneiro and I. Reid

e “Unsupervised monocular depth estimation with left-right consistency” — CVPR
2017

C Godard, O. Mac Aodha and G.J. Brostow

— Multi-view stereo

* “DeepStereo: Learning to Predict New Views from the World’s Imagery” — CVPR
2016

J. Flynn, I. Neulander, J. Philbin and N. Sanvely

* Previous work requires posed image sets during training
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Explainability prediction network

E, — per pixel soft mask

* Network’s belief in where direct view synthesis will be
successfully modeled for each target pixel

Lys = Es Ep Es(p)“t(p) - fs(p)l

e Avoid trivial solution

L'reg (Es)



Overcoming gradient locality

gradients — f (I (pr) — neigh(Is(ps)))

inhibit training if ground truth p, in low texture region or far from current location

* Explicit multi-scale and smoothness loss — gradients
derived from larger spatial regions

[ — over image scales
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“A large dataset to train convolutional networks for disparity, optical flow and scene flow estimation” — CVPR’16
(N. Mayer et.al.)
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Pose/explainability network I I .

Pose network

RelLU activations except for prediction layer

6*(N-1) outputs



Pose/explainability network

explainability network

Multi-scale side predictions
RelLU activations except for prediction layer

2*(N-1) outputs (softmax normalization => £ )



Training details

e TensorFlow

 Depth
— Cityscapes
— Cityscapes + KITTI
— Make3D
* Pose
— KITTI

* Single-view depth estimation
— 3 frames

* Pose estimation
— 5frames
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Figure 6. Comparison of single-view depth estimation between Eigen er al. [7] (with ground-truth depth supervision), Garg er al. [14]
(with ground-truth pose supervision), and ours (unsupervised). The ground-truth depth map is interpolated from sparse measurements for
visualization purpose. The last two rows show typical failure cases of our model, which sometimes struggles in vast open scenes and
objects close to the front of the camera.



Our prediction

Figure 5. Our sample predictions on the Cityscapes dataset using
the model trained on Cityscapes only.
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Figure 7. Comparison of single-view depth predictions on the
KITTI dataset by our initial Cityscapes model and the final model
(pre-trained on Cityscapes and then fine-tuned on KITTI). The
Cityscapes model sometimes makes structural mistakes (e.g. holes
on car body) likely due to the domain gap between the two
datasets.



Method Dataset ~ Supervision Error metric Accuracy metric
Depth Pose AbsRel SqRel RMSE RMSElog §<1.25 §<1.25%2 §<1.25°

Train set mean K v 0.403 5.530  8.709 0.403 0.593 0.776 0.878
Eigen et al. [7] Coarse K v 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [7] Fine K v 0.203 1.548  6.307 0.282 0.702 0.890 0.958
Liu et al. [32] K v 0.202 1.614  6.523 0275 0.678 0.895 0.965
Godard et al. [16] K v 0.148 1.344 5927 0.247 0.803 0.922 0.964
Godard et al. [16] CS+K v 0.124 1.076 5311 0.219 0.847 0.942 0.973
Ours (w/o explainability) K 0.221 2226 7.527 0.294 0.676 0.885 0.954
Ours K 0.208 1.768  6.856 0.283 0.678 0.885 0.957
Ours CS 0.267 2.686  7.580 0.334 0.577 0.840 0.937
Ours CS+K 0.198 1.836  6.565 0.275 0.718 0.901 0.960
Garg et al. [14] cap 50m K v 0.169 1.080  5.104 0.273 0.740 0.904 0.962
Ours (w/o explainability) cap 50m K 0.208 1.551 5452 0.273 0.695 0.900 0.964
Ours cap 50m K 0.201 1.391  5.181 0.264 0.696 0.900 0.966
Ours cap 50m CS 0.260 2232  6.148 0.321 0.590 0.852 0.945
Ours cap 50m CS+K 0.190 1.436  4.975 0.258 0.735 0.915 0.968

Table 1. Single-view depth results on the KITTI dataset [15] using the split of Eigen et al. [7] (Baseline numbers taken from [16]). For
training, K = KITTI, and CS = Cityscapes [5]. All methods we compare with use some form of supervision (either ground-truth depth or
calibrated camera pose) during training. Note: results from Garg et al. [14] are capped at S0m depth, so we break these out separately in
the lower part of the table.
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Figure 8. Our sample predictions on the Make3D dataset. Note
that our model is trained on KITTI + Cityscapes only, and directly
tested on Make3D.



Method Supervision Error metric
Depth Pose AbsRel SqRel RMSE RMSE log

Train set mean v 0.876 13.98 12.27 0.307
Karsch et al. [25] v 0.428 5.079 8.389 0.149
Liu et al. [33] v 0.475 6.562 10.05 0.165
Lainaetal. [31] v 0.204 1.840 5.683 0.084
Godard et al. [16] v 0.544 10.94 11.76 0.193
Ours 0.383 5.321 10.47 0.478

Table 2. Results on the Make3D dataset [42]. Similar to ours, Go-
dard et al. [16] do not utilize any of the Make3D data during train-
ing, and directly apply the model trained on KITTI+Cityscapes to
the test set. Following the evaluation protocol of [16], the errors
are only computed where depth is less than 70 meters in a central
image crop.
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Method Seq. 09 Seq. 10
ORB-SLAM (full) 0.014+0.008 0.012+0.011

ORB-SLAM (short) 0.064 £ 0.141 0.064 4+ 0.130
Mean Odom. 0.032 £ 0.026 0.028 £ 0.023
Ours 0.021 £0.017 0.020£0.015

Table 3. Absolute Trajectory Error (ATE) on the KITTI odome-
try split averaged over all 5-frame snippets (lower is better). Our
method outperforms baselines with the same input setting, but falls
short of ORB-SLAM (full) that uses strictly more data.
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Figure 9. Absolute Trajectory Error (ATE) at different left/right
turning magnitude (coordinate difference in the side-direction be-
tween the start and ending frame of a testing sequence). Our
method performs significantly better than ORB—-SLAM (short)
when side rotation is small, and is comparable with ORB-SLAM
(full) across the entire spectrum.
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Figure 10. Sample visualizations of the explainability masks.
Highlighted pixels are predicted to be unexplainable by the net-
work due to motion (rows 1-3), occlusion/visibility (rows 4-5), or
other factors (rows 7-8).



Conclusions

* Major challenges (not addressed):
— Estimate scene dynamics and occlusions
— Generalize for unknown camera types/calibrations
— Learn full 3D volumetric representations

* Assumptions:
— Pose network — uses image correspondences
— Depth network — recognizes common structural features

* Extend to object detection and semantic segmentation



