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OSVOS — “One-Shot Video Object Segmentation”
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Figure 1. Example result of our technique: The segmentation of the first frame (red) is used to learn the model of the specific object to
track, which is segmented in the rest of the frames independently (green). One every 20 frames shown of 90 in total.




OSVOS

* Problem:
* Semi-supervised video object segmentation

e Contributions:

e Adapt a CNN to a particular object instance given a single annotated image
* generic semantic information -> knowledge of the usual shapes of objects -> particular object segmentation

* Temporal consistency, but not explicitly imposed

* Speed accuracy trade-off
* Fine-tuning level (181 ms—-71.5% -> 7.83s5s-79.7%)
* Number of annotated frames (1 frame —79.8% -> 4 frames — 86.9%)



OSVOS
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Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-
tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the

segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific
target object in a single frame, the network rapidly focuses on that target.

“It is an object” -> “Itis this particular object”



CNN architecture

* Goals:
* Accurately localized dense predictions
* Relatively small number of parameters
* Relatively fast at testing time

* CNN architecture used for biomedical image segmentation®
* Based on VGG**
* Fully convolutional

*Maninis et. al. “Deep retinal image understanding”. MICCAI 2016

**Simonyan et. al. “Very deep convolutional networks for large-scale image recognition”. ICLR 2015



CNN architecture
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Figure 4. Two-stream FCN architecture: The main foreground
branch (1) is complemented by a contour branch (2) which im-
proves the localization of the boundaries (3).



CNN

* Binary classification
* Foreground vs. background
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Training

* Base network — offline training
* VGG trained on ImageNet for image labeling

* Parent network — offline training

* Fully convolutional network further trained on DAVIS training set for object
segmentation

* Test network — online training

* Fine-tune the parent network

* Segment a particular entity in a video given the image and the segmentation
of the first frame
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Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-
tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the
segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific

target object in a single frame, the network rapidly focuses on that target.

Figure 3. Qualitative evolution of the fine tuning: Results at 10
seconds and 1 minute per sequence.
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* Complementary CNN
* Detect object contours

* Individual trainin
d d ual tra g Figure 4. Two-stream FCN architecture: The main foreground
. On|y offline branch (1) is complemented by a contour branch (2) which im-

. proves the localization of the boundaries (3).
* Trained on PASCAL-Context Dataset
* Contour annotations for the whole scene

* Boundary snapping

* Compute superpixels that align to the computed contours
e Ultrametric Contour Map (UCM)*

* Final mask — superpixels that overlap more than 50% with foreground mask

*Arbelaez et. al. “Contour detection and hierarchical image segmentation”. TPAMI 2011

*Pont-Tuset et. al. “Multiscale combinatorial grouping for image segmentation and object proposal generation”. TPAMI 2017



Ablation study on DAVIS dataset

Measure Ours -BS -PN-BS -OS-BS -PN-OS-BS
Mean M1 798 774 24 64.6 152 525 273 17.6 622
U RecalO1 93.6 910 26 70.5 232 57.7 359 2.3 913
DecayD| 149 174 25 278 130 -19 167 1.8 131
Mean M 1T 80.6 78.1 25 66.7 139 47.7 329 20.3 604
F RecalO1T 926 920 o6 744 183 479 447 24 902
Decay D] 150 194 45 264 114 0.6 143 24 126
T MeanM | 37.6 335 40 609 233 53.8 162 460 84
Table 1. Ablation study on DAVIS: Comparison of OSVOS

against downgraded versions without some of its components.



Error analysis
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Figure 5. Error analysis of our method: Errors divided into False
Positives (FP-Close and FP-Far) and False Negatives (FN). Values
are total error pixels relative to the error in the -BS case.



Results - DAVIS
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Attribute-based performance

Attr Ours OFL BVS FCP JMP HVS SEA
AC 80.6 -1.2 56.6 176 48.6 176 52.8 86 524 70 41.4 204 432 111
DB 74.3 65 44.3 279 31.9 330 534 59 40.7 1991 429 139 31.1 227
FM 76.5 51 49.6 282 44.8 233 50.7 11.9 45.2 180 34.5 310 30.9 301
MB 737 110 55.5 228 537 115 509 136 509 111 42.3 225 393 203
OCC T1.2 37 613 ro 613-104 492 132 451 169 487 385 382 175
Table 3. Attribute-based performance: Quality of the tech-

niques on sequences with a certain attribute and the gain with
respect to this quality in the sequences without it (in italics and
smaller font). See DAVIS [ /] for the meaning of the acronyms.

AC — appearance change; DB — dynamic background;

FM- fast motion; MB — motion blur; OCC- occlusion



Number of training images — parent network

Training data 100 200 600 1000 2079
Quality (J) 74.6 769 712 713 714

Table 4. Amount of training data: Region similarity (7) as a
function of the number of training images. Full DAVIS is 2079.



Speed accuracy trade-off
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Figure 8. Quality versus timing: Region similarity with respect
to the processing time per frame.



Progressive refinement

Annotations 0 1 2 3 4 5 All
Quality (J) 585 79.8 846 859 869 875 887

Table 5. Progressive refinement: Quality achieved with respect
to the number of annotated frames OSVOS trains from.

l(f) Résult framé 35

Figure 9. Qualitative incremental results: The segmentation on
frame 35 improves after frames 0, 88, and 46 are annotated.



Evaluation as a tracker

Overlap 0.5 0.6 0.7 0.8 0.9

Ours 78.2 722 658 3594 49.6
MDNET [52] 664 57.8 434 295 14.7

Table 6. Evaluation as a tracker: Percentage of bounding boxes
that match with the ground truth at different levels of overlap.



Results — YouTube Objects

Category Ours OFL JES BVS SCF AFS FST HBT LTV

Aeroplane 88.2 89.9 89.0 868 8.3 799 709 736 137

Bird 85.7 842 816 809 81.0 784 706 56.1 122
Boat 77.5 740 742 65.1 68.6 60.1 425 578 108
Car e 8y N9 687 6hE b4 B2 328 230
Cat 708 683 677 559 589 504 521 305 18.6
Cow 778 79.8 79.1 699 686 657 445 418 163
Dog 81.3 76.6 703 685 61.8 542 653 368 18.0
Horse 728 726 678 589 540 50.8 535 443 115
Motorbike 73,5 73.7 615 60.5 609 583 442 489 106
Train 757 763 782 652 663 624 296 392 196
Mean 783 77.6 740 68.0 67.6 625 538 463 155

Table 7. Youtube-Objects evaluation: Per-category mean inter-
section over union (7).



Qualitative results
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Figure 7. Qualitative results: First row, an especially difficult sequence which OSVOS segments well. Second row, OSVOS’ worst result.



OnAVOS — “Online Adaptation of Convolutional Neural
Networks for Video Object Segmentation”

* Online adaptation of OSVOS

* Because OSVOS is not able to adapt to large changes in object
appearance

* Select training examples by choosing pixels for which the network is
very certain



OnAVOS

e Contributions:

* Online updated — adapt to changes in appearance
* More recent network architecture

* Additional objectness pretraining step

* OSVOS:
* base network -> parent network -> test network
* OnAVOS:
* base network -> objectness network -> domain specific objectness network -> test network



OnAVOS

 Base network
* ResNet
* ImageNet, COCO, PASCAL

e Objectness network*
* Trained PASCAL dataset

* Foreground vs background

* Domain specific objectness network
* Trained on DAVIS training set

*Jain et. al. “Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of generic
objects in videos”. CVPR 2017



OnAVOS

: Domain Specific Online Adapted
Dhjecmiess Nenkori Objectness Network Test Network Test Network
(pretrained on PASCAL) (pretrained on DAVIS) (fine-tuned on first frame) (fine-tuned online)

Figure 2: The pipeline of OnAVOS. Starting from pretrained weights, the network is first
pretrained for objectness on PASCAL (a). Afterwards we pretrain on DAVIS to incorporate
domain specific information (b). During test time, we fine-tune on the first frame, to obtain

the test network (c). On the following frames, the network is then fine-tuned online to adapt
to the changes in appearance (d).



Online adaptation

* Why?
* Object of interest changes over time
 New background objects can appear

e Current frame samples

* Positive samples
» Use pixels with very confident predictions as training examples
e Adaptation retains memory

* Negative samples
* Pixels that are far away from the last predicted object mask

* Don’t care area

* First frame is also used for online fine-tuning
* Avoid drifting



OnAVOS — qualitative results
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Figure 1: Qualitative results on two sequences of the DAVIS validation set. The second row
shows the pixels selected as positive (red) and negative (blue) training examples. It can be
seen that after online adaptation, the network can deal better with changes in viewpoint
(left) and new objects appearing in the scene (the car in the right sequence).



Online adaptation

Algorithm 1 Online Adaptive Video Object Segmentation (OnAVOS)

Input: Objectness network N, positive threshold o,  9: if lastmask # ( then

distance threshold d, total online steps 71,,ine. cur-  10: interleaved:
rent frame steps n¢yr 11: Fine-tune N\ for ng,,, steps on frame(t)
1: Fine-tune N for 50 steps on frame(1) using positives and negatives
2: lastmask < ground_truth(1) 12: Fine-tune N for ny,jine — Neurr StEPS 0N
3 Iovtr=2...T 4o frame(1) using ground_truth(1)
4: lastmask < erosion(lastmask) 13: end if
5 dtrans form < distance_transform(lastmask) 14: posteriors < forward(N , frame(t))
6 negatives < dtransform > d 15: lastmask < (posteriors > 0.5) \ negatives
T posteriors < forward(N ., frame(t)) 16: Output lastmask for frame ¢
8: positives <— (posteriors > ) \ negatives 17: end for




Ablation study - DAVIS

PASCAL | DAVIS | First frame | mloU [%]
v v v 80.31+04
v v 18.0+0.1
v v 77.61+0.4
v v 72.7
v 65.3
v 71.0
v 65210

Table 1: Effect of (pre-)training steps on the DAVIS validation set. As can be seen, each of

the three training steps are useful. The objectness pretraining step on PASCAL significantly
improves the results.



Ablation study - DAVIS

Method mloU [%]

No adaptation 80.34+0.4

Full adaptation 82.84+0.5

Only negatives 82.4+0.3

Only positives 81603

No first frame during online adaptation | 69.1 0.2

Table 2: Online adaptation ablation experiments on the DAVIS validation set. As can be
seen, mixing in the first frame during online updates 1s essential, and negative examples are
more important than positive ones.



Results

Method DAVIS YouTube-Objects
mloU [%] mloU [%]
OnAVOS (ours), no adaptation 80.3+0.4 16,113
+CRF 81.7+0.5 76.440.2
+CRF +Test time augmentations | 81.740.2 16.610.1
OnAVOS (ours), online adaptation | 82.840.5 76.8 0.1
+CRF 84.340.5 77.24£0.2
+CRF +Test time augmentations | 85.7+0.6 77.4+0.2
OSVOS [7] 798 712.5
MaskTrack [35] 19.7 72.6
LucidTracker [24] T 80.5 76.2
VPN [22] 75.0 -

Table 3: Comparison to the state of the art on the DAVIS validation set and the YouTube-

Objects dataset. : Concurrent work only published on arXiv. More results are shown in
the supplementary material.



Results - DAVIS
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