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The task of segmenting moving objects in unconstrained videos



* |nput
— Video frames & estimated optical flow
* Output

— Binary segmentations of moving objects

* Moving objects = move in at least one frame



e Two-stream neural network

1) encode spatial and temporal features
2) capture the evolution of objects over time



Contributions

* The solution does not require manually
annotated frames in the input video

* The network incorporates a memory unit to
capture evolution of objects

* Exploit CNN representations instead of hand-
crafted features

e Learn features vs propagation of initial guess
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Figure 2. Overview of our segmentation approach. Each video frame is processed by the appearance (green) and the motion (yellow)
networks to produce an intermediate two-stream representation. The ConvGRU module combines this with the learned visual memory to
compute the final segmentation result. The width (w”) and height (h”) of the feature map and the output are w/8 and h/8 respectively.



Appearance network

* Deeplab-LargeFOV*

— Atrous convolution in VGG-16 fc6’ layer ooty

 Relatively high spatial resolution of features
* Context information

e Pretrained on PASCAL VOC 2012 for semantic
segmentation

— Distinguish objects from background as well as
from each other

“Semantic image segmentation with deep convolutional nets and fully connected CRFs”-
ICLR 2015
L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille



Appearance network

e w’'xh”x1024

 Two 1x1 convolutional layers
— Trained along with ConvGRU

e w xh'x128
—w' =w/8,h"=h/8



Motion network

e MPNet*

* Pretrained on FlyingThings3D dataset
— Synthetic dataset

* w/4 x h/4 x1 motion prediction output

— Likelihood of the corresponding pixel being in
motion

— Downsampled =>w/8 x h/8 x 1

“Learning Motion Patterns in Videos”- CVPR 2017
Pavel Tokmakov, Karteek Alahari, Cordelia Schmid



Motion network
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Figure 3. Our motion pattern network: MP-Net. The blue arrows in the encoder part (a) denote convolutional layers, together with ReLU
and max-pooling layers. The red arrows in the decoder part (b) are convolutional layers with ReLU, ‘up’ denotes 2 x 2 upsampling of the
output of the previous unit. The unit shown in green represents bilinear interpolation of the output of the last decoder unit.
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Figure 2. (a,b) Two example frames from a sequence in the FlyingThings3D dataset [23]. The camera is in motion in this scene, along
with four independently moving objects. (¢) Ground-truth optical flow of (a), which illustrates motion of both foreground objects and
background with respect to the next frame (b). (d) Ground-truth segmentation of moving objects in this scene.



MPNet

Limitations:

* Frame based approach

* Overlooks appearance features

* Fails if the object stops moving (ho motion cues)

Solutions:

* Heuristic post-processing step with object cues

* Combine with other video segmentation methods
* CRF



Memory module

* Based on convolutional gated units — ConvGRU

e Goal:
— Refine estimates of appearance and motion networks

— Memorize the appearance and location of objects

* Helps in frames where:

— Objects are static
— Motion prediction fails



Memory module
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Figure 3. Illustration of ConvGRU with details for the candidate
hidden state module, where A+ is computed with two convolutional
operations and a tanh nonlinearity.



Memory module

* Visual memory representation of a pixel is determined not
only by the input and the previous state at that pixel, but also
by its local neighborhood.



Memory module

* Bidirectional processing
— Handle cases where objects move in the latter frames
— Improves the ability to correct motion prediction errors
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Figure 4. Illustration of the bidirectional processing with our Con-
vGRU module.




(a) goat, t =23 (b) dance-twirl, t = 19
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Figure 7. Visualization of the ConvGRU gate activations for two sequences from the DAVIS validation set. The first row in each example
shows the motion stream output and the final segmentation result. The other rows are the reset (r+) and the inverse of the update (1 — z;)

gate activations for the corresponding ith dimension. These activations are shown as grayscale heat maps, where white denotes a high
activation.



Training

* Only ConvGRU

e DAVIS dataset

— 30 videos

* Augmentation

— Simulate stop-and-go scenarios



Ablation study

Aspect Variant Mean IoU
Ours (fc6, ConvGRU, Bidir, DAVIS) 70.1
no 43.5
App stream RGB >8.3
2-layer CNN 60.9
DeepLab fc7 69.8
DeepLab conv5 67.7
App pretrain ImageNet only 64.1
Motion stream no 59.6
ConvRNN 68.7
Memory module | ConvLSTM 68.9
no 64.1
Bidir processing | no 67.2
Train data FT3D GT Flow 55.3
FT3D LDOF Flow 59.6

Table 1. Ablation study on the DAVIS validation set showing
variants of appearance and motion streams and memory module.
“Ours” refers to the model using fc6 features together with a mo-
tion stream, and a bidirectional ConvGRU trained on DAVIS.



Comparison to MPNet

Figure 1. Sample results on the DAVIS dataset. Segmentations
produced by MP-Net [43] (left) and our approach (right), overlaid
on the video frame.



Comparison to MPNet

Method Mean IoU
Ours 70.1
Ours + CRF 75.9
MP-Net 53.6
MP-Net + Ob;j 63.3
MP-Net + Obj + FST (MP-Net-V) 55.0
MP-Net + Obj + CRF (MP-Net-F) 70.0

Table 2. Comparison to MP-Net [43] variants on the DAVIS vali-
dation set. “Obj” refers to the objectness cues used in [43]. MP-
Net-V(ideo) and MP-Net-F(rame) are variants of MP-Net which
use FST [31] and CRF respectively, in addition to objectness.



Results - DAVIS
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Figure 5. Qualitative comparison with top-performing methods on DAVIS. Left to right: ground truth, results of CUT [22], FST [31],
MP-Net-Frame [43], and our method.



Results - DAVIS

Measure | PCM[3] CVOS[/1] KEY[25] MSG[!] NLC[II] CUT[22] FEST[3!] MP-Net-F[13] Ours
Mean 40.1 482 498 533 55.1 55.2 558 70.0 75.9
J | Recall 34.3 54.0 59.1 61.6 55.8 57.5 64.9 85.0 89.1
Decay 15.2 10.5 14.1 2.4 12.6 2.3 0.0 1.4 0.0
Mean 39.6 447 127 50.8 523 55.2 51.1 65.9 72.1
F | Recall 15.4 526 37.5 60.0 51.9 61.0 51.6 79.2 83.4
Decay 12.7 11.7 10.6 5.1 11.4 3.4 2.9 2.5 1.3
T | Mean 513 244 252 29.1 414 26.3 343 56.3 25.5

Table 3. Comparison to state-of-the-art methods on DAVIS with intersection over union (.7), F-measure (), and temporal stability (7).
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Results - FBMS

Measure Set KEY [25] MP-Net-F [43] FST[3]] CVOS[4l1] CUT[22] MP-Net-V [43] Ours
P Training 64.9 83.0 71.3 79.2 86.6 69.3 90.7
Test 62.3 84.0 76.3 83.4 83.1 81.4 92.1

» Training 52.7 54.2 70.6 79.0 80.3 80.8 71.3
Test 56.0 49.4 63.3 67.9 71.5 73.9 67.4

T Training 58.2 65.6 71.0 79.3 83.4 74.6 79.8
Test 59.0 62.2 69.2 74.9 76.8 77.5 77.8

Table 4. Comparison to state-of-the-art methods on FBMS with precision (P), recall (R), and F-measure (F).
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Figure 6. Qualitative comparison with top-performing methods on
FBMS. Left to right: results of CUT [22], MP-Net-Video [3 ], and
our method.



Results - SegTrack

CUT [22] FEST[31] NLC[!I] Ouwurs
47.8 54.3 67.2 57.3

Table 5. Comparison to state-of-the-art methods on SegTrack-v2
with mean IoU.




