

Video Object Segmentation

Multi/Single object With/Without first frame annotation

Haller Emanuela ehaller@bitdefender.com

24 September 2019

- "YouTube-VOS: Sequence-to-Sequence Video Object Segmentation" [12] - ECCV 2018
- "RVOS: End-to-End Recurrent Network for Video Object Segmentation" [10] - CVPR 2019

- "YouTube-VOS: Sequence-to-Sequence Video Object Segmentation" [12] - ECCV 2018
- "RVOS: End-to-End Recurrent Network for Video Object Segmentation" [10] - CVPR 2019

YouTube-VOS: Sequence-to-Sequence Video Object Segmentation

- Semi-supervised VOS task
- End-to-end sequential learning to explore spatio-temporal features for video object segmentation
- Introduce a large-scale video object segmentation dataset: YouTube-VOS
 - more than 3000 videos
 - 3-6 seconds
 - multiple objects manually annotated

YouTube-VOS

Table 1: Scale comparison between YouTube-VOS and existing datasets. "Annotations" denotes the total number of object annotations. "Duration" denotes the total duration (in minutes) of the annotated videos.

C 1 -	JC	ST	YTO	FBMS	DA	VIS	YouTube-VOS
Scale	[13]	[26]	[21]	[30]	[33]	[34]	(Ours)
Videos	22	14	96	59	50	90	3,252
Categories	14	11	10	16	-	-	78
Objects	22	24	96	139	50	205	6,048
Annotations	6,331	1,475	$1,\!692$	1,465	3,440	13,543	133,886
Duration	3.52	0.59	9.01	7.70	2.88	5.17	217.21

- ▶ Videos from YouTube-8M [1]
 - Up to 100 videos for each category
 - Automatically split videos in short clips
- Some object categories:
 - animals (e.g. ant, eagle, goldfish, person)
 - vehicles (e.g. airplane, bicylce, boat, sedan)
 - accesories (e.g. eyeglass, hat, bag)
 - common objects (e.g. tennis, skateboarding, motorcycling, umbrella)

Abu-El-Haija et al. [1] - 2016

YouTube-VOS

Fig. 1: The ground truth annotations of sample video clips in our dataset. Different objects are highlighted with different colors.

S2S: Problem formulation

► Given:

- ▶ $\{\mathbf{x}_t | t \in [0, T-1]\}$ video sequence with T frames
- $\mathbf{x}_t \in \mathbb{R}^{H \times W \times 3}$ frame t
- $\mathbf{y}_0 \in \mathbb{R}^{H \times W}$ first frame binary mask

Find:

$$\begin{array}{l} & \{ \hat{\mathbf{y}}_t | t \in [1, T-1] \} \\ & \hat{\mathbf{y}}_t = \arg \max_{\forall \overline{\mathbf{y}}_t} \mathbb{P}(\overline{\mathbf{y}}_t | \mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_t, \mathbf{y}_0) \end{array}$$

• Other solutions model:

•
$$\hat{\mathbf{y}}_t = \arg \max_{\forall \overline{\mathbf{y}}_t} \mathbb{P}(\overline{\mathbf{y}}_t | \mathbf{x}_0, \mathbf{x}_t, \mathbf{y}_0)$$

or

$$\hat{\mathbf{y}}_t = \arg \max_{\forall \overline{\mathbf{y}_t}} \mathbb{P}(\overline{\mathbf{y}}_t | \mathbf{x}_0, \mathbf{y}_0, \mathbf{x}_t, \mathbf{x}_{t-1})$$

S2S: Architecture (1)

$$\begin{aligned} \mathbf{c}_{0}, \mathbf{h}_{0} &= \text{Initializer}(\mathbf{x}_{0}, \mathbf{y}_{0}) \\ \widetilde{\mathbf{x}}_{t} &= \text{Encoder}(\mathbf{x}_{t}) \\ \mathbf{c}_{t}, \mathbf{h}_{t} &= \text{ConvLSTM}(\widetilde{\mathbf{x}_{t}}, \mathbf{c}_{t-1}, \mathbf{h}_{t-1}) \\ \widehat{\mathbf{y}_{t}} &= \text{Decoder}(\mathbf{h}_{t}) \end{aligned}$$

S2S: Architecture (2)

- Backbone:
 - VGG-16 [9]
- Initializer:
 - Backbone + 2 convolutional layers
- Encoder:
 - Backbone + 1 convolutional layer
- ► ConvLSTM:
 - 3x3 filters
 - ReLU for state outputs
- Decoder:
 - 5 upsampling layers

Backbone

ConvNet Configuration									
Α	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	i	0							
conv3-64	conv3-64	com/3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	corrv3-64	conv3-64	conv3-64				
		IDEO	pool						
conv3+128	conv3+128	conv3-128	conv3-128	conv3-128	conv3+128				
		conv3-128	conv3-128	corrv3-128	conv3-128				
		max	pool						
conv3-256	com/3-256	conv3-256	conv3-256	conv3-256	conv3-256				
comv3-256	cottv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
		mao	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	corrv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	comv3-512	conv3-512				
					conv3-512				
	mapool								
		first conves							
TC 1000									
	-FC-1010-								
soft-max									
soft-max									

S2S: Training

► Offline training

- Training set of YouTube-VOS
- For each iteration, randomly select an object and T (5 11) frames from a random training video sequence
- RGB images: 256x448
- YouTube-VOS doesn't provide annotations for all frames
- S2S training:
 - Early stages use only annotated frames
 - When the training losses become stable, add frames without annotations
- Online training
 - Update Initializer, Encoder and Decoder
 - From (x₀, y₀), through affine transformations, generate possible future frames and corresponding annotations ⇒ training pairs (x₀, y₀) − (x₁, y₁)

S2S: Experiments YouTube-VOS

Table 2: Comparisons of our approach and other methods on YouTube-VOS test set. The results in each cell show the test results for seen/unseen categories. "OL" denotes online learning. The best results are highlighted in bold.

Method	$\mathcal{J} \operatorname{mean} \uparrow$	$\mathcal J$ recall \uparrow	\mathcal{J} decay \downarrow	$\mathcal{F} \operatorname{mean}^{\uparrow}$	\mathcal{F} recall \uparrow	$\mathcal{F} \operatorname{decay} \downarrow$
SegFlow [8]	40.4/38.5	45.4/41.7	7.2/8.4	35.0/32.7	35.3/32.1	6.9/9.1
OSVOS [6]	59.1/58.8	66.2/64.5	17.9/19.5	63.7/63.9	69.0/67.9	20.6/23.0
MaskTrack [32]	56.9/60.7	64.4/69.6	13.4/16.4	59.3/63.7	66.4/73.4	16.8/19.8
OSMN [50]	54.9/52.9	59.7/57.6	10.2/14.6	57.3/55.2	60.8/58.0	10.4/13.8
OnAVOS [44]	55.7/56.8	61.6/61.5	10.3/9.4	61.3/62.3	66.0/67.3	13.1/12.8
Ours (w/o OL)	60.9/60.1	70.3/71.2	7.9/12.9	64.2/62.3	73.0/71.4	9.3/14.5
Ours (with OL)	66.9/66.8	78.7/76.5	10.2/9.5	74.1/72.3	82.8/80.5	12.6/13.4

S2S: Experiments YouTube-VOS

(a) Seen categories

(b) Unseen categories

Fig. 3: The changes of $\mathcal J$ mean values over the length of video sequences.

S2S: Experiments YouTube-VOS

Fig. 4: Some visual results produced by our model without online learning on the YouTube-VOS test set. The first column shows the initial ground truth object segmentation (green color) while the second to the last column are predictions.

S2S: Experiments DAVIS-2016

► Fine-tune the model on DAVIS training set - 30 videos

Table 3: Comparisons of our approach and previous methods on the DAVIS 2016 dataset. Different components used in each algorithm are marked. "OL" denotes online learning. "PP" denotes post processing by CRF [25] or Boundary Snapping [6]. "OF" denotes optical flows. "RNN" denotes RNN and its variants.

Method	OL	PP	OF	RNN	mean $IoU(\%)$	Speed(s)
BVS [43]	-	X	X	-	60.0	0.37
OFL [27]	-	✓	1	-	68.0	42.2
SegFlow [8]	1	1	1	×	76.1	7.9
MaskTrack [32]	1	✓	×	×	79.7	12
OSVOS [6]	1	1	X	×	79.8	10
OnAVOS [44]	1	✓	×	×	85.7	13
OSMN $[50]$	X	X	×	X	74.0	0.14
VPN [22]	X	X	X	×	70.2	0.63
ConvGRU [41]	×	✓	1	1	75.9	20
Ours	X	X	X	1	76.5	0.16
Ours	1	X	X	1	79.1	9

S2S: Experiments DAVIS-2016

Fig. 5: The comparison results between our model without online learning (upper row) and with online learning (bottom row). Each column shows predictions of the two models at the same frame.

S2S: Limitations of other datasets

- ► Training settings:
 - Setting 1: Train S2S on 30 videos (DAVIS-2016)
 - Setting 2: Train S2S on 192 videos (DAVIS-2016, SegTrackv2, JumpCut and YouTube-Objects)
 - Setting 3: Encoder pretrained DeepLab [2], other components trained on 30 videos (DAVIS-2016)
- Test on validation set of DAVIS-2016
 - Setting 1: 51.3% JMean
 - Setting 2: 51.9% JMean
 - Setting 3: 45.6% JMean

Chen et al. [2] - TPAMI 2017

S2S: Ablation study Dataset scale

Table 4: The effect of data scale on our algorithm. We use different portions of training data to train our models and evaluate on the YouTube-VOS test set.

Scale	$\mathcal J$ mean \uparrow	$\mathcal J$ recall \uparrow	\mathcal{J} decay \downarrow	\mathcal{F} mean \uparrow	\mathcal{F} recall \uparrow	\mathcal{F} decay \downarrow
25%	46.7/40.1	53.5/45.6	8.3/13.6	46.7/40.0	52.2/41.6	8.5/13.2
50%	51.5/50.3	59.2/58.8	10.3/13.1	51.8/50.2	59.5/55.8	11.1/13.3
75%	56.8/56.0	65.7/67.1	7.6/10.0	59.6/56.3	68.8/64.1	8.5/11.1
100%	60.9/60.1	70.3/71.2	7.9/12.9	64.2/62.3	73.0/71.4	9.3/14.5

S2S: Ablation study Initializer variants

- With Initializer
 - Seen categories: 60.9%
 - Unseen categories: 60.1%
- Without Initializer initial mask as hidden state
 - Seen categories: 45.1%
 - Unseen categories: 38.6%

S2S: Ablation study Encoder variants

- Use previous masks as input to the Encoder, in addition to current frame
- Same model for Initializer and Encoder VGG-16 based architecture
- Original:
 - Seen categories: 60.9%
 - Unseen categories: 60.1%
- Merge Initializer & Encoder
 - Seen categories: 59.4%
 - Unseen categories: 60.7%

- "YouTube-VOS: Sequence-to-Sequence Video Object Segmentation" [12] - ECCV 2018
- "RVOS: End-to-End Recurrent Network for Video Object Segmentation" [10] - CVPR 2019

RVOS: End-to-End Recurrent Network for Video Object Segmentation

- Recurrent network for multiple object Video Object Segmentation - RVOS
- Zero-shot / Unsupervised VOS task
- Extension for One-Shot / Semi-supervised VOS task
- Datasets:
 - DAVIS-2017
 - YouTube-VOS

RVOS

- Recurrent model spatial and temporal domains
- Trainable end-to-end and handles multiple objects in a unified manner
- Handles both Zero-shot and One-shot VOS tasks
- Good results

- ▶ RIS "Recurrent Instance Segmentation" [6] ECCV 2016
- RSIS "Recurrent Neural Networks for Semantic Instance Segmentation" [8] - arXiv 2019
- RVOS adds recurrence in the temporal domain on top of RSIS

Romera et al. [6], Salvador et al. [8]

RVOS - related work

- RIS "Recurrent Instance Segmentation" [6] ECCV 2016
- RSIS "Recurrent Neural Networks for Semantic Instance Segmentation" [8] - arXiv 2019
- RVOS adds recurrence in the temporal domain on top of RSIS

Romera et al. [6], Salvador et al. [8]

- New instance segmentation paradigm: an end-to-end method that learns how to segment instances sequentially
- Input
 - image $\mathbf{I} \in \mathbb{R}^{h \times w \times c}$
- Output
 - ▶ sequence of masks: $\mathbf{Y} = {\{\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_n\}}, \mathbf{Y}_t \in [0, 1]^{h \times w}$
 - confidence scores: $s = \{s_1, s_2, ..., s_n\}$, $s_t \in [0, 1]$

RIS - Fully Convolutional Network [4]

 $\blacktriangleright \mathbf{I} \in \mathbb{R}^{h \times w \times c} \Rightarrow \mathbf{B} \in \mathbb{R}^{h' \times w' \times d}$

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

Long et al. [4] CVPR 2015

RIS - ConvLSTM 2 [11]

i_t =
$$\sigma(W_{xi} * B + W_{hi} * H_{t-1} + b_i)$$
f_t = $\sigma(W_{xf} * B + W_{hf} * H_{t-1} + b_f)$
o_t = $\sigma(W_{xo} * B + W_{ho} * H_{t-1} + b_o)$
g_t = tanh(W_{xg} * B + W_{hg} * H_{t-1} + b_g)
C_t = f_t ⊙ C_{t-1} + i_t ⊙ g_t
H_t = o_t ⊙ tanh(C_t)
H_t, C_t ∈ ℝ^{h'×w'×d}

Shi et al. [11] NIPS 2015

RIS - Attention by Spatial Inhibition

• $r: \mathbb{R}^{h' \times w' \times d} \rightarrow [0,1]^{h \times w}, [0,1]$

- Discriminate one instance
 - conv: d channels $\Rightarrow 1$ channel
 - ▶ log softmax: values in $(-\infty, 0]$ with sum of exponentials 1
 - competing mechanism, inhibiting pixels that do not belong to current instance
 - b: learned threshold
- Compute confidence of predicted candidate

RIS - Loss Function (1)

Dataset:

▶
$$\mathbf{I}^{(i)} \in \mathbb{R}^{h \times w \times c}$$

▶ $\mathbf{Y}^{(i)} = \{\mathbf{Y}_1^{(i)}, \mathbf{Y}_2^{(i)}, ..., \mathbf{Y}_{n_i}^{(i)}\}, \mathbf{Y}_t^{(i)} \in \{0, 1\}^{h \times w}$

Predictions:

$$\hat{\mathbf{Y}}^{(i)} = \{ \hat{\mathbf{Y}}^{(i)}_1, \hat{\mathbf{Y}}^{(i)}_2, ..., \hat{\mathbf{Y}}^{(i)}_{\hat{n}_i} \}, \ \hat{\mathbf{Y}}^{(i)}_t \in [0, 1]^{h \times w}$$

$$s^{(i)} = \{ s_1^{(i)}, s_2^{(i)}, ..., s_{\hat{n}_i}^{(i)} \}$$

• $s_t^{(i)} < 0.5 \Rightarrow$ networks stops producing outputs

▶ Usually, $\hat{n}_i \neq n_i$; for training: $\hat{n}_i = n_i + 2$ - in order to learn when to stop

RIS - Loss Function (2)

$$\max_{\delta \in \mathcal{S}} f_{\text{Match}}(\mathbf{\hat{Y}}, \mathbf{Y}, \delta),$$

$$f_{\text{Match}}(\hat{\mathbf{Y}}, \mathbf{Y}, \delta) = \sum_{\hat{t}=1}^{\hat{n}} \left(\sum_{t=1}^{n} f_{\text{IoU}}\left(\hat{\mathbf{Y}}_{\hat{\mathbf{t}}}, \mathbf{Y}_{\mathbf{t}} \right) \delta_{\hat{t}, t} \right),$$
$$\mathcal{S} = \left\{ \begin{array}{l} \delta \in \{0, 1\}^{\hat{n} \times n} : \sum_{\hat{t}=1}^{\hat{n}} \delta_{\hat{t}, t} \leq 1, \, \forall t \in \{1 \dots n\} \\ \sum_{t=1}^{n} \delta_{\hat{t}, t} \leq 1, \, \forall \hat{t} \in \{1 \dots \hat{n}\} \end{array} \right\},$$

- \blacktriangleright Optimal δ with Hungarian algorithm
- $\widetilde{n} = min(\widehat{n}, n)$
- $f_{loU}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{\langle \hat{\mathbf{y}}, \mathbf{y} \rangle}{\|\hat{\mathbf{y}}\|_1 + \|\mathbf{y}\|_1 + \langle \hat{\mathbf{y}}, \mathbf{y} \rangle}$ relaxed version of loU

• s_t should be 1 as long as $t \le n$

RIS - Loss Function (3)

$$\ell(\hat{\mathbf{Y}}, \mathbf{s}, \mathbf{Y}) = \min_{\delta \in \mathcal{S}} - \sum_{\hat{t}=1}^{\hat{n}} \sum_{t=1}^{n} f_{\text{IoU}}\left(\hat{\mathbf{Y}}_{\hat{\mathbf{t}}}, \mathbf{Y}_{\mathbf{t}}\right) \delta_{\hat{t}, t} + \lambda \sum_{t=1}^{\hat{n}} f_{\text{BCE}}\left([t \le n], s_t\right), \quad (5)$$

where $f_{BCE}(a, b) = -(a\log(b) + (1-a)\log(1-b))$ is the binary cross entropy, and the Iverson bracket [·] is 1 if the condition within the brackets is true, and 0 otherwise. Finally, λ is a hyperparameter that ponders the importance of the second term with respect to the first one.

- ▶ RIS "Recurrent Instance Segmentation" [6] ECCV 2016
- RSIS "Recurrent Neural Networks for Semantic Instance Segmentation" [8] - arXiv 2019
- RVOS adds recurrence in the temporal domain on top of RSIS

Romera et al. [6], Salvador et al. [8]

Semantic instance segmentation

- Input:
 - image $x \in \mathbf{R}^{h \times w \times c}$
- Output:
 - $\hat{y} = \{\hat{y}_1, \hat{y}_2, ..., \hat{y}_{\hat{n}}\}$ • $\hat{y}_4 = \{\hat{y} \ \hat{y}_2, \hat{y}_1, \hat{y}_2, \hat{y}_1\}$

$$\hat{y}_t = \{\hat{y}_m, \hat{y}_b, \hat{y}_c, \hat{y}_s\}$$

- mask: $\hat{y}_m \in [0,1]^{h \times w}$
- bounding box: $\hat{y}_b \in [0,1]^4$
- class probabilities: $\hat{y}_c \in [0, 1]^C$
- ▶ objectness score: $\hat{y}_s \in [0,1]$ stopping criterion

Semantic instance segmentation

- Input:
 - image $x \in \mathbf{R}^{h \times w \times c}$
- Output:
 - $\hat{y} = \{\hat{y}_1, \hat{y}_2, ..., \hat{y}_{\hat{n}}\}$ • $\hat{y}_4 = \{\hat{y} \ \hat{y}_2, \hat{y}_1, \hat{y}_2, \hat{y}_1\}$

$$\hat{y}_t = \{\hat{y}_m, \hat{y}_b, \hat{y}_c, \hat{y}_s\}$$

- mask: $\hat{y}_m \in [0,1]^{h \times w}$
- bounding box: $\hat{y}_b \in [0,1]^4$
- class probabilities: $\hat{y}_c \in [0,1]^C$
- ▶ objectness score: $\hat{y}_s \in [0,1]$ stopping criterion

RSIS - Encoder-Decoder Architecture

RSIS - Encoder

ResNet-101 [3], pretrained on ImageNet [7]

layer name	output size	18-layer	34-layer 50-layer		101-layer	152-layer	
convl	112×112						
				e 2			
conv2.x	56×56	$\left[\begin{array}{c} 3{\times}3,64\\ 3{\times}3,64\end{array}\right]{\times}2$	$\left[\begin{array}{c} 3{\times}3, 64\\ 3{\times}3, 64\end{array}\right]{\times}3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1\times1, 64\\ 3\times3, 64\\ 1\times1, 256 \end{bmatrix} \times 3$	
conv3.x	28×28	$\left[\begin{array}{c} 3{\times}3,128\\ 3{\times}3,128\end{array}\right]{\times}2$	$\left[\begin{array}{c} 3{\times}3,128\\ 3{\times}3,128\end{array}\right]{\times}4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4.x	14×14	$\left[\begin{array}{c} 3{\times}3,256\\ 3{\times}3,256\end{array}\right]{\times}2$	$\left[\begin{array}{c} 3{\times}3,256\\ 3{\times}3,256\end{array}\right]{\times}6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\!\times\!2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1						
FL	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10^9	7.6×10 ⁹	11.3×10 ⁹	

He et al. [3] - CVPR 2016, Russakovsky et al. [7] - IJCV 2015
RSIS - Decoder (1)

- Hierarchical recurrent architecture
- Upsampling network composed of a series of ConvLSTM layers
- Skip connections that bypass the previous recurrent layers
- Reliance on the features changes across different time steps

RSIS - Decoder (2)

- $h_{i,t} = \text{ConvLSTM}_i([B_2(h_{i-1,t})|S_i], h_{i,t-1})$
- $h_{0,t} = \text{ConvLSTM}_0(S_0, h_{0,t-1})$
- ▶ B₂ bilinear upsampling operator

RSIS - Decoder (3)

- ConvLSTMs: 3 × 3 kernels
- Segmentation: 1×1 convolutional layer over $h_{4,t}$
- Bounding box, class and stop prediction: three separate fully connected layers, over [MP(h_{0,t}), MP(h_{1,t}), MP(h_{2,t}), MP(h_{3,t}), MP(h_{4,t})]
 - MP max-pooling operator

RSIS - Loss Function

$$\mathbf{L} = \mathbf{L}_m + \alpha \mathbf{L}_b + \beta \mathbf{L}_c + \gamma \mathbf{L}_s$$

- Segmentation Loss (L_m)
- Classification Loss (L_c)
- Detection Loss (L_b)
- ▶ Stop Loss (L_s)
- Loss terms are subsequently added as training progresses
- ► For large number of objects per image curriculum learning
 - start by learning to predict two objects and increase the number of objects once the validation loss plateaus

RSIS - Loss Function Segmentation Loss L_m

Predicted masks: $\hat{y}_m = (\hat{y}_{m,1}, \hat{y}_{m,2}, \dots, \hat{y}_{m,\hat{n}})$ Ground truth masks: $y_m = (y_{m,1}, y_{m,2}, \dots, y_{m,n})$ $L_m(\hat{y}_m, y_m, \delta) = \sum_{t=1}^{\hat{n}} \sum_{t'=1}^{n} \text{sloU}(\hat{y}_{m,t}, y_{m,t'}) \delta_{t,t'}$

•
$$\operatorname{sloU}(\hat{y}, y) = 1 - \frac{\langle \hat{y}, y \rangle}{\|\hat{y}\|_1 + \|y\|_1 + \langle \hat{y}, y \rangle}$$

 $\blacktriangleright~\delta$ - matrix of assignments - computed using the Hungarian algorithm and sloU as cost

RSIS - Loss Function Classification Loss L_c

Predicted class probabilities:

 $\hat{y}_{c} = \left(\hat{y}_{c,1}, \hat{y}_{c,2}, ..., \hat{y}_{c,\hat{n}}\right)$

Ground truth class probabilities:

•
$$y_c = (y_{c,1}, y_{c,2}, ..., y_{c,n})$$

 \blacktriangleright Categorical cross entropy, considering the pairs determined by δ

RSIS - Loss Function Detection Loss L_b

Predicted bounding boxes:

 $\hat{y}_b = (\hat{y}_{b,1}, \hat{y}_{b,2}, ..., \hat{y}_{b,\hat{n}})$

Ground truth bounding boxes:

 $y_b = (y_{b,1}, y_{b,2}, \dots, y_{b,n})$

 \blacktriangleright Mean squared error between the box coordinates of matched pairs determined by δ

RSIS - Loss Function Stop Loss L_s

- Predicted objectness score:
 - $\hat{y}_{s,t}$
- Ground truth:

 $\mathbb{1}_{t \leq n}$

Binary cross entropy

- ▶ RIS "Recurrent Instance Segmentation" [6] ECCV 2016
- RSIS "Recurrent Neural Networks for Semantic Instance Segmentation" [8] - arXiv 2019
- RVOS adds recurrence in the temporal domain on top of RSIS

Romera et al. [6], Salvador et al. [8]

RVOS

- Recurrent model spatial and temporal domains
- Trainable end-to-end and handles multiple objects in a unified manner
- Handles both Zero-shot and One-shot VOS tasks
- Good results

RVOS - Encoder-Decoder architecture

RVOS

47 / 69

RVOS - Encoder

- Similar to RSIS
- ResNet-101 pretrained on ImageNet
- Input: x_t RGB image
- Output: $f_t = f_{t,1}, f_{t,2}, \dots, f_{t,k}$ features at different resolutions
- Configurations:
 - 1. original RSIS architecture
 - **2.** add the masks of the instances from the previous frame as one additional channel of the output features

- Hierarchical recurrent architecture of ConvLSTMs
- Output for frame $t: S_{t,1}, S_{t,2}, ..., S_{t,N}$
- Temporal recurrence ensures an object has the same index

RVOS - Decoder (2)

▶ $h_{t,i,k}$ - output of k-th ConvLSTM layer for object i at frame t

$$h_{t,i,k} = \text{ConvLSTM}_k(h_{input}, h_{state})$$

$$h_{input} = [B_2(h_{t,i,k-1})|f'_{t,k}|S_{t-1,i}]$$

$$h_{state} = [h_{t,i-1,k}|h_{t-1,i,k}]$$

• $h_{t-1,i,k}$ - temporal hidden state

- First ConvLSTM \Rightarrow $h_{input} = [f'_{t,0}|S_{t-1,i}]$
- First object $\Rightarrow h_{state} = [Z|h_{t-1,i,k}]$
- $S_{t-1,i}$ used only for one-shot VOS

RVOS - Decoder (3)

RVOS - Experiments

- videos containing multiple objects
- 3-6 seconds per video
- YouTube-VOS [12]
 - training set 3471 videos
 - 65 unique object categories seen categories
 - validation set 474 videos
 - ▶ 91 unique object categories 26 unseen + 65 seen categories
- DAVIS-2017 [5]
 - training set 60 videos
 - validation set 30 videos
 - test-dev set 30 videos

Xu et al. [12], Pont-Tuset et al. [5]

RVOS - Runtime analysis

RVOS

- 44 ms/frame GPU P100
- ▶ 67 ms/frame GPU K80
- OSMN 150 ms/frame
- S2S 160 ms/frame
- other methods using online learning are two order of magnitude slower

RVOS - Training details

- RGB images: 256 x 448
- batch: 4 clips of 5 consecutive frames
- 20 epochs using the previous ground truth mask
- 20 epochs using the previous inferred mask

	YouTube-VOS one-shot				
	J_{seen}	J_{unseen}	F_{seen}	F_{unseen}	
RVOS-Mask-S	54.7	37.3	57.4	42.4	
RVOS-Mask-T	59.9	39.2	63.1	45.6	
RVOS-Mask-ST	60.8	44.6	63.7	50.3	
RVOS-Mask-ST+	63.1	44.5	67.1	50.4	

Table 1. Ablation study about spatial and temporal recurrence in the decoder for one-shot VOS in YouTube-VOS dataset. Models have been trained using 80%-20% partition of the training set and evaluated on the validation set. + means that the model has been trained using the inferred masks.

Figure 4. Qualitative results comparing spatial (rows 1,3) and spatio-temporal (rows 2,4) models.

Figure 5. Qualitative results comparing training with ground truth masks (rows 1,3) and training with inferred masks (rows 2,4).

		Y	DS one-s	S one-shot	
	OL	J_{seen}	J_{unseen}	F_{seen}	F_{unseen}
OSVOS [3]	1	59.8	54.2	60.5	60.7
MaskTrack [20]	\checkmark	59.9	45.0	59.5	47.9
OnAVOS [30]	\checkmark	60.1	46.6	62.7	51.4
OSMN [34]	×	60.0	40.6	60.1	44.0
S2S w/o OL [33]	X	66.7	48.2	65.5	50.3
RVOS-Mask-ST+	×	63.6	45.5	67.2	51.0

Table 2. Comparison against state of the art VOS techniques for one-shot VOS on YouTube-VOS validation set. OL refers to online learning. The table is split in two parts, depending on whether the techniques use online learning or not.

Number of instances (YouTube-VOS)					
	1	2	3	4	5
J mean	78.2	62.8	50.7	50.2	56.3
F mean	75.5	67.6	56.1	62.3	66.4

Table 3. Analysis of our proposed model RVOS-Mask-ST+ depending on the number of instances in one-shot VOS.

Figure 6. Qualitative results for one-shot video object segmentation on YouTube-VOS with multiple instances.

RVOS - Experiments One-shot VOS - DAVIS-2017

		DAVIS-2017 one-shot		
	OL	J	F	
OSVOS [3]	1	47.0	54.8	
OnAVOS [30]	1	49.9	55.7	
OSVOS-S [17]	1	52.9	62.1	
CINM [2]	1	64.5	70.5	
OSMN [34]	X	37.7	44.9	
FAVOS [4]	×	42.9	44.2	
RVOS-Mask-ST+ (pre)	×	46.4	50.6	
RVOS-Mask-ST+ (ft)	X	48.0	52.6	

Table 4. Comparison against state of the art VOS techniques for one-shot VOS on DAVIS-2017 test-dev set. OL refers to online learning. The model RVOS-Mask-ST+(pre) is the one trained on Youtube-VOS, and the model RVOS-Mask-ST+ (ft) is after finetuning the model for DAVIS-2017. The table is split in two parts, depending on whether the techniques use online learning or not.

RVOS - Experiments One-shot VOS - DAVIS-2017

Figure 7. Qualitative results for one-shot on DAVIS-2017 test-dev.

RVOS - Experiments Zero-shot VOS

No dataset specially designed for this task

Figure 8. Missing object annotations may suppose a problem for zero-shot video object segmentation.

RVOS - Experiments Zero-shot VOS

- Allow to segment up to 10 object instances, expecting that the up to 5 object instances are amond the predicted ones
- during training, each annotated object is uniquely assigned to one predicted object
- not-assigned predicted object do not contribute to loss function
- during testing, first frame annotation are used to compute correspondences between predictions and ground truth

Figure 8. Missing object annotations may suppose a problem for zero-shot video object segmentation.

	YouTube-VOS zero-shot			
	J_{seen}	J_{unseen}	F_{seen}	F_{unseen}
RVOS-S	40.8	19.9	43.9	23.2
RVOS-T	37.1	20.2	38.7	21.6
RVOS-ST	44.7	21.2	45.0	23.9

Table 5. Ablation study about spatial and temporal recurrence in the decoder for zero-shot VOS in YouTube-VOS dataset. Our models have been trained using 80%-20% partition of the training set and evaluated on the validation set.

Figure 9. Qualitative results for zero-shot video object segmentation on YouTube-VOS with multiple instances.

 RVOS-Mask-ST+(pre) J 21.7 F 27.3
 RVOS-Mask-ST+(ft) J 23.0 F 29.9

bad performance explainable in conjunction to bad performance for unseen objects in YouTube-VOS

RVOS - Experiments Zero-shot VOS - DAVIS-2017

Figure 10. Qualitative results for zero-shot video object segmentation on DAVIS-2017 with multiple instances.

Thank you!

References I

- S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675, 2016.
- [2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence*, 40(4):834–848, 2017.
- [3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

References II

- [4] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3431–3440, 2015.
- [5] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung, and L. Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017.
- [6] B. Romera-Paredes and P. H. S. Torr. Recurrent instance segmentation. In *European conference on computer vision*, pages 312–329. Springer, 2016.
- [7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
 S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

References III

- [8] A. Salvador, M. Bellver, V. Campos, M. Baradad, F. Marques, J. Torres, and X. Giro-i Nieto. Recurrent neural networks for semantic instance segmentation. arXiv preprint arXiv:1712.00617, 2017.
- [9] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [10] C. Ventura, M. Bellver, A. Girbau, A. Salvador, F. Marques, and X. Giro-i Nieto. Rvos: End-to-end recurrent network for video object segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 5277–5286, 2019.
- [11] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In *Advances in neural information processing systems*, pages 802–810, 2015.
References IV

[12] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang. Youtube-vos: A large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327, 2018.