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Video Object Segmentation - VOS

I Pixel-level binary masks for the object/objects of interest

I Level of supervision
I Train:

I Unsupervised VOS methods
I Supervised VOS methods

I Test:
I Unsupervised VOS task
I Semi-supervised VOS task

I Number of objects
I Single Object VOS task
I Multi Object VOS task
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Unsupervised VOS task
I Single Object

Input Output

I Multi Object - Ill posed problem, with no special dataset

Input Output
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Semi-supervised VOS task
I Single Object

Input Output

I Multi Object

Input Output
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VOS datasets

I DAVIS

- 150 videos
- Pixel level annotations

I YouTube-VOS

- 4519 videos
- Pixel level annotations

I SegTrack

- 14 videos
- Pixel level annotations

I YouTube-Objects

- 2511 video shots, 720000 frames
- Bounding box annotations
- Subset of 126 videos with pixel level annotations

I FBMS

- 59 videos
- Pixel level annotations
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COSNet
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COSNet

I Unsupervised VOS task

I Single Object: primary object

I Supervised method
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COSNet: Intuition

I Primary objects
I locally salient

distinguishable in an
individual frame

I globally consistent
frequently appearing
throughout the video
sequence
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COSNet

I Segment the main object of
a frame Fa, exploiting
consistencies with a set of
frames {Fb1 ,Fb2 , ...FbN}.
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COSNet

I Target frame: Fa

I Reference frames: {Fb1 , ...,FbN}

I Xa defined by Fa, f (Fb1 ,Fa), ..., f (FbN ,Fa)

- features of frame Fa

- summary of {Fb1 , ...,FbN} in light of Fa
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COSNet

I Learn how to exploit consistencies, considering pairs of
frames: f (Fa,Fb)
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COSNet: Architecture
Training phase
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COSNet: Features Embedding Module

I Input: {Fa, Fb} ∈ RH ′×W ′×3

I Output: {Va, Vb} ∈ RH×W×C

I DeepLabv3 [2]

Chen et al. [2]
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COSNet: Co-Attention Module

I Input: {Va, Vb} ∈ RH×W×C

I Output: {Xa, Xb} ∈ RH×W×2C

I Xa = [Za,Va], Za - co-attention representation for frame Fa
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COSNet: Co-Attention Module

I Va, Vb - features of frames Fa and Fb

Va,Vb ∈ RC×WH

I S ∈ RWH×WH - affinity matrix

Si ,j - similarity between location i of Fb and location j in Fa

I Sc ,Sr ∈ RWH×WH - attention weights

Normalize S row-wise and column-wise, using softmax

I Xa = [Za,Va]

I Za = f (Fa,Fb) ∈ RC×WH

- i-th column of Za - weighted average of all columns of Vb

- weights defined by i-th column of Sc
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COSNet: Co-Attention Module

I Gated co-attention

Decide how much information will be preserved

Za = Za ∗ fg (Za)

fg (Za) = σ(wf Za +bf )) ∈ [0,1]WH
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COSNet: Co-Attention Module
Definition of S

I Simple affinity matrix:

A = VT
b Va ∈ R(WH)×(WH)

Ai ,j - similarity between location i of Fb and location j in Fa

I Weighted affinity matrix:

S = VT
b WVa ∈ R(WH)×(WH)

WC×C - weight matrix
Si ,j - weighted similarity between location i of Fb and location
j in Fa

I Constraints on W⇒ different co-attention mechanisms:
I Vanilla co-attention
I Symmetric co-attention
I Channel-wise co-attention
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COSNet: Co-Attention Module
I Vanilla co-attention - W diagonalizable matrix

S = VT
b WVa = VT

b P−1DPVa

Feature representation of each frame undergoes linear
transformations.

I Symmetric co-attention - W symmetric matrix

S = VT
b WVa = VT

b PTDPVa = (PVb)TD(PVa)

Project Va and Vb into an orthogonal common space -
eliminate correlation between different channels.

I Channel-wise co-attention - W diagonal matrix

S = VT
b WVa = VT

b DVa = VT
b DaDbVa = (DaVb)T (DbVa)

Apply channel-wise weights - alleviate channel-wise
redundancy.
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COSNet: Co-Attention Module
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COSNet: Segmentation Module

I Input: {Xa, Xb} ∈ RH×W×2C

I Output: {Ya, Yb} ∈ RH ′×W ′

I Multiple convolutional layers
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COSNet: Training

I Datasets:
I Saliency datasets: MSRA10k [3] and DUT [19]
I Video object segmentation: DAVIS2016 [9]

I Training procedure consists of two alternated steps:
I Backbone trained for salient object segmentation

- with an additional convolutional layer for generating
segmentations

I COSNet trained with video segmentation data: pairs of
randomly selected video frames

I Weighted binary cross entropy loss

Cheng et al. [3], Yang et al. [19], Perazzi et al. [9]
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COSNet: Testing

I Query frame Fa

I Reference frame set {Fbn}Nn=1

I Za← 1
N ∑

N
n=1 Zan ∗ fg (Zan)

I CRF refinement step
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COSNet: Ablation study
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COSNet: Ablation study
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COSNet: Quantitative results
DAVIS2016
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COSNet: Quantitative results
FBMS
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COSNet: Quantitative results
YouTube-Objects
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COSNet: Qualitative results
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RVOS
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RVOS: End-to-End Recurrent Network
for Video Object Segmentation

I Unsupervised VOS task
I Extension for semi-supervised VOS task

I Multi Object

I Supervised method
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RVOS

I Recurrent model - spatial and temporal domains

I Handles multiple objects in a unified manner

I Suitable for both unsupervised and semi-supervised VOS tasks
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RVOS: prior work

I RIS - ”Recurrent Instance Segmentation” [12] - ECCV 2016

I RSIS - ”Recurrent Neural Networks for Semantic Instance
Segmentation” [14] - arXiv 2019

I RVOS - adds recurrence in the temporal domain on top of
RSIS

Romera et al. [12], Salvador et al. [14]
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RVOS: prior work

I RIS - ”Recurrent Instance Segmentation” [12] - ECCV
2016

I RSIS - ”Recurrent Neural Networks for Semantic Instance
Segmentation” [14] - arXiv 2019

I RVOS - adds recurrence in the temporal domain on top of
RSIS

Romera et al. [12], Salvador et al. [14]
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RIS
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RIS

I New instance segmentation paradigm: an end-to-end method
that learns how to segment instances sequentially

I Input
I image I ∈ Rh×w×3

I Output
I sequence of masks: Y = {Y1,Y2, ...,Yn}, Yt ∈ [0,1]h×w

I confidence scores: s = {s1,s2, ...,sn}, st ∈ [0,1]
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RIS: Fully Convolutional Network [7]

I I ∈ Rh×w×3⇒ B ∈ Rh′×w ′×d

Long et al. [7] CVPR 2015
37 / 96



RIS: ConvLSTM [17]

Shi et al. [17] NIPS 2015
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RIS: Attention by Spatial Inhibition

I r : Rh′×w ′×d → [0,1]h×w , [0,1]
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RIS: Training

I Train set:
I I(i) ∈ Rh×w×c

I Y(i) = {Y1
(i),Y2

(i), ...,Yni
(i)}, Yt

(i) ∈ {0,1}h×w

I Predictions:
I Ŷ(i) = {Ŷ(i)

1 , Ŷ
(i)
2 , ..., Ŷ

(i)
n̂i
}, Ŷ

(i)
t ∈ [0,1]h×w

I s(i) = {s1(i),s2(i), ...,sn̂i (i)}
I st

(i) < 0.5⇒ networks stops producing outputs

I Usually, n̂i 6= ni ; for training: n̂i = ni + 2 - in order to learn
when to stop
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RIS: Training

I Match predictions to ground truth
I δ ∈ {0,1}ñ×n

I δi ,j specifies if predicted mask i is associated to ground truth
mask j

I ñ = min(n̂,n) - keep first predictions

I Bipartite graph
I Cost of edge between a predicted mask Ŷt̂ and a ground truth

mask Yt :

fIoU(Ŷt̂ ,Yt) = 〈Ŷt̂ ,Yt 〉
‖Ŷt̂‖1+‖Yt‖1+〈Ŷt̂ ,Yt 〉

- relaxed version of IoU

I Loss
I High IoU according to δ

I st should be 1 as long as t ≤ n
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RVOS: prior work

I RIS - ”Recurrent Instance Segmentation” [12] - ECCV 2016

I RSIS - ”Recurrent Neural Networks for Semantic
Instance Segmentation” [14] - arXiv 2019

I RVOS - adds recurrence in the temporal domain on top of
RSIS

Romera et al. [12], Salvador et al. [14]
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RSIS

I Semantic instance segmentation

I Input:
I image x ∈ Rh×w×3

I Output:
I ŷ = {ŷ1, ŷ2, ..., ŷn̂}
I ŷt = {ŷm, ŷb, ŷc , ŷs}

I mask: ŷm ∈ [0,1]h×w

I bounding box: ŷb ∈ [0,1]4

I class probabilities: ŷc ∈ [0,1]C

I objectness score: ŷs ∈ [0,1] - stopping criterion
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RSIS: Encoder-Decoder Architecture
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RSIS: Encoder

I ResNet-101 [5], pretrained on ImageNet
[13]

He et al. [5] - CVPR 2016, Russakovsky et al. [13] - IJCV 2015
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RSIS: Decoder

I Hierarchical recurrent
architecture

I Upsampling network
composed of a series
of ConvLSTM layers

I Skip connections that
bypass the previous
recurrent layers

I Reliance on the
features changes
across different time
steps
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RSIS: Decoder

I hi ,t = ConvLSTMi ([B2(hi−1,t)|Si ],hi ,t−1)

I h0,t = ConvLSTM0(S0,h0,t−1)

I B2 - bilinear upsampling operator
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RSIS: Decoder

I ConvLSTMs: 3×3 kernels

I Segmentation: 1×1 convolutional layer over h4,t
I Bounding box, class and stop prediction: three separate fully

connected layers, over
[MP(h0,t),MP(h1,t),MP(h2,t),MP(h3,t),MP(h4,t)]
I MP - max-pooling operator
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RSIS: Loss Function

L = Lm + αLb + βLc + γLs

I Segmentation Loss (Lm)

I Classification Loss (Lc)

I Detection Loss (Lb)

I Stop Loss (Ls)

I Considering δ

I Loss terms are subsequently added as training progresses
I For large number of objects per image - curriculum learning

I start by learning to predict two objects and increase the
number of objects once the validation loss plateaus
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RVOS: related work

I RIS - ”Recurrent Instance Segmentation” [12] - ECCV 2016

I RSIS - ”Recurrent Neural Networks for Semantic Instance
Segmentation” [14] - arXiv 2019

I RVOS - adds recurrence in the temporal domain on top
of RSIS

Romera et al. [12], Salvador et al. [14]
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RVOS
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RVOS: Encoder-Decoder architecture

I Configurations:

1. Unsupervised VOS
original RSIS architecture
2. Semi-supervised VOS
add the mask of the instance from the previous frame as one
additional channel of the output features
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RVOS
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RVOS

I Encoder
I ResNet-101, pretrained on ImageNet

I Decoder
I Hierarchical recurrent architecture of ConvLSTMs
I Temporal recurrence
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RVOS: Decoder

I ht,i ,k - output of k-th ConvLSTM layer for object i at frame t

I ht,i ,k = ConvLSTMk(hinput ,hstate)
I hinput = [B2(ht,i ,k−1)|f ′t,k |St−1,i ]
I hstate = [ht,i−1,k |ht−1,i ,k ]

I ht−1,i ,k - temporal hidden state

I ht,i−i ,k - spatial hidden state

I First ConvLSTM ⇒ hinput = [f ′t,0|St−1,i ]
I First object ⇒ hstate = [Z |ht−1,i ,k ]

I St−1,i - used only for semi-supervised VOS
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RVOS: Training

I RGB images: 256 x 448

I batch: 4 clips of 5 consecutive frames

I 20 epochs using the previous ground truth mask

I 20 epochs using the previous inferred mask

56 / 96



RVOS: Experiments
Semi-supervised VOS - YouTube-VOS
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RVOS: Experiments
Semi-supervised VOS - YouTube-VOS
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RVOS: Experiments
Semi-supervised VOS - YouTube-VOS
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RVOS: Experiments
Semi-supervised VOS - YouTube-VOS
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RVOS: Experiments
Semi-supervised VOS - YouTube-VOS

61 / 96



RVOS: Experiments
Semi-supervised VOS - YouTube-VOS
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RVOS: Experiments
Semi-supervised VOS - DAVIS2017
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RVOS: Experiments
Semi-supervised VOS - DAVIS-2017
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RVOS: Experiments
Unsupervised VOS

I No dataset specially designed for this task

I Allow to segment up to 10 object instances, expecting the
annotated ones to be among them

I During training, each annotated object is uniquely assigned to
one predicted object

I Not-assigned predicted object do not contribute to loss
function

I During testing, first frame annotation are used to compute
correspondences between predictions and ground truth
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RVOS: Experiments
Unsupervised VOS - YouTube-VOS
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RVOS: Experiments
Unsupervised VOS - YouTube-VOS
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RVOS: Experiments
Unsupervised VOS - DAVIS2017

J F
RVOS-ST (pre) 21.7 27.3
RVOS-ST (ft) 23.0 29.9

I bad performance explainable in conjunction to bad
performance for unseen objects in YouTube-VOS
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RVOS: Experiments
Unsupervised VOS - DAVIS2017
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A-GAME
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A-GAME

I Semi-supervised VOS task

I Single / Multi Object

I Supervised method
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A-GAME

I Network learns in a one-shot manner to discriminate between
target and background pixels, without invoking stochastic
gradient descent.
I Appearance model that learns a probabilistic generative model

of target and background feature distributions.
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A-GAME

I Semi-supervised VOS ⇒ first frame annotations are used to
compute the initial parameters.

I Parameters are updated online, based on predictions.

I For a given frame, the appearance model will define a coarse
segmentation mask based on previous parameters.

I Further, the coarse mask is used to update model parameters.
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A-GAME: Architecture
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A-GAME: Backbone

I ResNet101 [5],[1], pretrained on ImageNet [13]

I All network, except last block, is frozen

I Input: It ∈ Rh×w×3 - frame t

I Output: {xt1,xt2, ...,xtm}, m = hw - nr pixels in image,
xti ∈ RDx1

He et al. [5], Chen et al. [1], Russakovsky et al. [13]
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A-GAME: Appearance Module

I Input:
I {xt1,xt2, ...,xtm}
I θ t−1 - previous frame parameters of the appearance model

-
I ỹ tp - coarse segmentation

I Output:
I stp,k - score for component k at location p, in frame t

-
I θ t
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A-GAME: Appearance Module

I K components

I Each such component
exclusively models the
feature vectors of either
foreground or background

I 4 Gaussians:
k ∈ {0,2} - background
k ∈ {1,3} - foreground
I 0 & 1 - base components
I 2 & 3 - distractors
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A-GAME: Appearance Module

I Model output:

p(z tp = k|xtp,θ t−1) =
p(ztp=k)p(xtp |ztp=k)

∑i p(z
t
p=i)p(xtp |ztp=i)

I In practice, log-probabilities are fed to the fusion module
I stp,k ≈ log(p(z tp = k)p(x tp|z tp = k))

I zp discrete random variable assigning observation xp to a
specific component

I Uniform prior: p(zp = k) = 1
K

I p(xp) = ∑
K
k=1 p(zp = k)p(xp|zp = k)

I p(xp|zp = k) = N (xp|µk ,Σk)
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A-GAME: Appearance Module

I First frame:
I Initial parameters are inferred from the extracted features and

initial target mask

I Subsequent frames:
I Update the model using soft component assignment variables

αt
p,k ∈ [0,1] (α0

p,k ∈ {0,1})

79 / 96



A-GAME: Appearance Module

I Model parameters updates

µ̃t
k =

∑p αt
p,kxtp

∑p αt
p,k

Σ̃t
k =

∑p αt
p,kdiag{(x

t
p−µ̃t

k )
2+rk}

∑p αt
p,k

rk - trainable

I Model update

µ0
k = µ̃0

k

Σ0
k = Σ̃0

k
-
µt
k = (1−λ )µ

t−1
k + λ µ̃t

k

Σt
k = (1−λ )Σt−1

k + λ Σ̃t
k
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A-GAME: Appearance Module

I Base components:
I First frame (yp ∈ {0,1}):

α0
p,0 = 1−yp

α0
p,1 = yp

I Subsequent frames:

αt
p,0 = 1− ỹp(It ,θ t−1,Φ)

αt
p,1 = ỹp(It ,θ t−1,Φ)

Φ - network parameters

I Additional components

αt
p,2 = max(0,αt

p,0−p(z tp = 0|xtp,µt
0 ,Σ

t
0))

αt
p,3 = max(0,αt

p,1−p(z tp = 1|xtp,µt
1 ,Σ

t
1))

Posteriors evaluated using only the base components
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A-GAME: Mask-Propagation Module [16]

I Three convolutional layers

Wug et al. [16]
82 / 96



A-GAME: Fusion Module

I Concatenate results of Appearance and Mask-Propagation
Modules

I 2 convolutional layers
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A-GAME: Upsampling Module

I Predicts a soft-segmentation mask
ŷp

I Coarse representation is
successively combined with
successively shallower features [10]

Pinheiro et al. [10]
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A-GAME: Predictor Coarse

I Generates a coarse soft-segmentation mask ỹp
I Will be used by the Appearance and Mask-Propagation

Modules
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A-GAME: Predictor Final
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A-GAME: Multi-Object

I Run the model once per object

I Combine resulting soft-segmentations with
softmax-aggregation [16]

I Aggregated soft-segmentations will replace ỹp in the recurrent
connection

Wug et al. [16]
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A-GAME: Training

I Training sample: one video, with n frames, along with the
annotation for the first frame

I Cross-entropy loss on the final mask

I Auxiliary loss for coarse segmentation ỹp

88 / 96



A-GAME: Training

I Datasets:
I DAVIS2017 [11]
I YouTube-VOS [18]
I SynthVOS

I Add 1-5 objects from MSRA10k [3] (salient objects) into
images from VOC2012 [4]

I Move objects across the image ⇒ synthetic video

Pont-Tuset et al. [11], Xu et al. [18], Cheng et al. [3], Everingham et al.
[4]
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A-GAME: Training

I Initial training
I 80 epochs
I All 3 datasets
I Half resolution images
I Batch: 4 sequences of 8 frames

I Finetuning
I 100 epochs
I DAVIS2017 & YouTube-VOS
I Full resolution images
I Batch: 2 sequences of 14 frames
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A-GAME: Ablation study
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A-GAME: Quantitative results
YouTube-VOS
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A-GAME: Quantitative results
DAVIS2017
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A-GAME: Quantitative results
DAVIS2016
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A-GAME: Qualitative results
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Thank you!
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